Форма поиска

 
    HomeSymmetry and structure of SrTiO3 nanotubes.

Symmetry and structure of SrTiO3 nanotubes.

Название публикации: 
Symmetry and structure of SrTiO3 nanotubes.
Тип: 
Публикация
Авторы: 
R. A. Evarestov
Выходные данные публикации: 
IOP Conference Series: Materials Science and Engineering, 2011, -V. 23, -Num. 1, P. 012012
Дата публикации: 
2011-02
Аннотация: 
<p style="font-size: 1.2em; margin: 0.25em 0px 0.75em; line-height: 1.35em; color: rgb(0, 0, 0); font-family: Arial, Helvetica, Verdana, sans-serif;"><span style="font-size:12px;">The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group&nbsp;<i>L</i>&nbsp;=&nbsp;<i>ZP</i>(a product of one axial point group&nbsp;<i>P</i>&nbsp;and one infinite cyclic group&nbsp;<i>Z</i>&nbsp;of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO<span style="vertical-align: baseline; position: relative; top: 0.25em;">3</span>&nbsp;nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector&nbsp;<b>L</b>&nbsp;=<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span><b>a</b>&nbsp;+&nbsp;<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span><b>b</b>&nbsp;and chiral vector&nbsp;<b>R</b>&nbsp;=&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span><b>a</b>&nbsp;+&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span><b>b,</b>&nbsp;(<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,&nbsp;<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>,&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>&nbsp;and&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>&nbsp;are integers). The nanotube of the chirality (<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>) is obtained by folding the (001) slabs of two- layers (with the layer group P4<i>mm</i>) and of three layers (with the layer group P4/<i>mmm</i>) in a way that the chiral vector&nbsp;<b>R</b>&nbsp;becomes circumference of the nanotube. Due to the orthogonality relation (<b>RL)</b>&nbsp;= 0,&nbsp;<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>/<i>l</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>&nbsp;= &minus;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>/<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>&nbsp;i.e. SW nanotubes with square morphology are commensurate for any rolling vector&nbsp;<b>R(</b><i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>). For SW (<i>n</i>,0) NTs the line symmetry groups belong to family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>) and are&nbsp;<i>n</i>/<i>mmm</i>&nbsp;or&nbsp;<img align="MIDDLE" alt="" src="http://ej.iop.org/images/1757-899X/23/1/012012/mse11_23_012012eqn1.gif" />&nbsp;for even and odd&nbsp;<i>n</i>, respectively. For SW (<i>n</i>,<i>n</i>) NTs the line symmetry groups (2<i>n</i>)<span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>n</i></span>/<i>mcm</i>&nbsp;belong to family 13 (<i>T</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2<i>n</i></span><span style="vertical-align: baseline; position: relative; bottom: 0.5em;">1</span>&nbsp;<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>).</span></p> <p style="font-size: 1.2em; margin: 0.25em 0px 0.75em; line-height: 1.35em; color: rgb(0, 0, 0); font-family: Arial, Helvetica, Verdana, sans-serif;"><span style="font-size:12px;">The line symmetry group of a double-wall nanotube is found as intersection&nbsp;<i>L</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>&nbsp;=&nbsp;<i>Z</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span><i>P</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>&nbsp;= (<i>L</i>&nbsp;<img align="baseline" alt="bigcap" src="http://ej.iop.org/icons/Entities/bigcap.gif" />&nbsp;<i>L&#39;</i>) of the symmetry groups&nbsp;<i>L</i>and&nbsp;<i>L&#39;</i>&nbsp;of its single-wall constituents as earlier considered for DW CNTs. The symmetry group of DWNT (<i>n</i>,0)@<i>M</i>(<i>n</i>,0) belongs to the same family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>) as its SW constituents. The symmetry group of DWNT (<i>n</i>,<i>n</i>)@<i>M</i>(<i>n</i>,<i>n</i>) depends on the parity of&nbsp;<i>M</i>. For DW NTs with odd&nbsp;<i>M</i>, the line symmetry groups are the same as for their SW constituents and belong to family 13 (<i>T</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2<i>n</i></span><span style="vertical-align: baseline; position: relative; bottom: 0.5em;">1</span><i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>). For even&nbsp;<i>M</i>, the rotations about screw axis of order 2<i>n</i>&nbsp;are changed by rotations around pure rotation axis of order&nbsp;<i>n</i>&nbsp;so that DW NT line symmetry groups belong to family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>). Commensurate STO DWNTs (<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,0)@(<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>,0) and (<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>,&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>)@(<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>,<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>) belong to family 11 (<i>T</i>^<i>D</i><span style="vertical-align: baseline; position: relative; top: 0.25em;"><i>nh</i></span>) with&nbsp;<i>n</i>&nbsp;equal to the greatest common divisor of&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">1</span>&nbsp;and&nbsp;<i>n</i><span style="vertical-align: baseline; position: relative; top: 0.25em;">2</span>.</span></p>
Ссылка на публикацию: